
HEAT EXCHANGE BETWEEN AN INFILTRATED
GRANULAR BED AND A SURFACE

Yu. S. Teplitskii UDC 532.546

Comparative analysis of the existing relations for calculation of convective heat exchange between an infil-
trated granular bed and surfaces of different geometry has been carried out. It is shown that different char-
acteristic scales of the process of heat and mass transfer correspond to laminar and turbulent modes of
filtrational flow. The occurrence of an analogy with heat transfer of a single-phase medium in a laminar
mode has been found. A correlation for calculation of heat exchange between a vertical cylinder and an in-
filtrated granular bed has been obtained.

Convective heat exchange between macrosurfaces and an infiltrated (blown-through) granular bed occurs in
different power plants and technological equipment. Comprehensive knowledge of the laws governing heat transfer
within a wide range of variation of determining parameters is required to provide necessary reliability of design of
such apparatuses.

The present paper is aimed at investigation of relations between heat transfer and a hydrodynamic mode of
filtrational flow in a granular bed through analysis of characteristic scales of the process and, on this basis, at deter-
mination of physically justified limits of applicability of the available relations to calculation of heat exchange between
a granular bed and a surface. We consider most important, from the point of view of practice, variants of heat trans-
fer: in longitudinal flow past a plate (direction of gas/liquid filtration relative to the surface is implied); in longitudinal
flow past a cylinder; and in transverse flow past a cylinder with the walls filled with a granular bed.

Heat Transfer in Longitudinal Flow past a Plate. In [1], the known Boussinesque solution

α = 




4cf ρfuλ
πL





0.5

 . (1)

was used for calculation of the plate-length-mean coefficient of heat transfer. Formula (1) corresponds to a simplest
one-zone model, which considers a granular bed as quasihomogeneous medium with thermophysical characteristics con-
stant throughout the volume. In [1] it was shown that (1) satisfactorily describes experimental data in beds of particles
with d = 0.3–0.8 mm at Red = 2–30. In [2], based on a more physical two-zone model of the granular bed, which
allows for the presence of the zone of elevated porosity near the heat-transfer surface, the computational relation

α = 
2λeff

Da

 
λ0

s − f
 2ξd

1 + λ0
sξd

 , (2)

which describes heat transfer at Red = 2–2600, was obtained. It can be easily seen that for ξd → 0 (one-zone model)
formula (2) takes on the form

α = (cfρfuλ ⁄ L)0.5
 . (3)

Expression (3) coincides with (1) with an accuracy of the coefficient (4 ⁄ π)0.5 C 1.13. The study of the asymptotic be-
havior of (2) for ξd → 0 showed that, beginning with d ⁄ Da C 5⋅10−3, formulas (2) and (3) virtually [with an error not
higher than 5% (usual for measurements of the heat-transfer coefficient)] coincide.
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Heat Transfer in Longitudinal Flow past a Cylinder. Gabor [1] obtained a simple relation similar to (1):

α = 




4cf ρfuλ
πL





0.5

 + λ ⁄ D , (4)

which was verified for Red = 2–213. In [2], within the framework of the already-mentioned two-zone model the fol-
lowing was obtained for α:

α = 
2λeff

Da

 
λ0

s + f
 2ξd

 ⁄ K
∗

1 + λ0
sξd

 ⁄ K
∗

 K
∗
 . (5)

This formula was checked within a wide range of Reynolds numbers Red = 2–2600. It is easy to see that at K∗  = 1
(plane surface) (5) changes over to (2). When ξd → 0, (5) takes on the form

α = K
∗
 (cfρfuλ ⁄ L)0.5

 . (6)

As for the plane case, the calculations by (6) are in good agreement with formula (4).
Based on (5), which reflects the special features of heat transfer in the granular bed most adequately, we can

write a general form of the functional dependence of the mean coefficient of heat exchange of the granular bed with
the vertical cylinder of height L:

NuL = f 



ReL, Pr, 

λs

λf
, ε, 

d

Da
, 

d

L
, 

d

D




 . (7)

Despite the large number of determining dimensionless parameters, the hydrodynamic mode of flow in the granular
bed is determined only by the specific form of NuL as a function of ReL. Consequently, the study of characteristic
scales of the process of heat transfer, which correspond to one flow mode or another, does not require analysis of the
equation which involves d ⁄ Da and d/D (they reflect the value of the near-wall resistance and curvature of the heat-
transfer surface). Therefore, it suffices to restrict ourselves to investigation of Eq. (1) or Eq. (3). Equation (3) can be
given a dimensionless form:

NuL = 




λ
λf





0.5

 ReL
0.5

 Pr
0.5

 . (8)

It is easy to see that (8) is a partial case of the general expression (7) if we take into account that the quantity
λ ⁄ λf is given by the expression [3]

λ
λf

 = 
λs

0

λf
 + 0.1 Red Pr , (9)

where

λs
0

λf
 = 1 + 

(1 − ε) (1 − λf
 ⁄ λs)

λf
 ⁄ λs + 0.28ε0.63(λs

 ⁄ λf)
0.18 . (10)

With account for (9) we represent expression (8) as

NuL = 




λs
0

λf
 + 0.1 Red Pr



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0.5
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0.5

 . (11)
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We consider two limiting cases at Pr = 0.7 and λs
0 ⁄ λf = 3–6.

1. Small Red. When Red ≤ 5, λ ⁄ λf C λs
0 ⁄ λf and formula (11) is

NuL = 




λs
0

λf





0.5

 ReL
0.5

 Pr
0.5

 . (12)

The coefficient λs
0 ⁄ λf does not depend on Red and (12) has the typical form of the formula for calculation of heat

transfer of a one-phase medium in a laminar mode. Consequently, (12) describes heat transfer in the granular bed in
a laminar mode when viscosity forces prevail and the Darcy law holds [4]. In this mode, interaction between individ-
ual jets is virtually absent and the process is determined by the only characteristic scale — the surface length L.

2. Large Red. When Red ≥ 80, λ ⁄ λf C 0.1RedPr and formula (11) takes on the form

NuL = 0.316 ReL Pr 


d
L





0.5

 . (13)

Dependence (13) corresponds to a turbulent flow mode when effective heat transfer, which is caused by mixing of in-
dividual gas jets, formation of vortices in shadow regions behind particles, and interaction of these vortices with each
other, becomes substantial. The scale of these vortices is d, which results in the appearance of a new characteristic di-
mension in (13).

Formula (5) is not quite illustrative and is not convenient for practical calculations. Therefore, using (7) as a
basis, we made an exponential approximation of it for a turbulent mode:

NuL = 0.68 ReL
0.77
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0.4
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 . (14)

Experimental data of [2, 5, 6] together with results of the calculation by (14) are given in Fig. 1 [for convenience,
formula (14) is presented in terms of Nud → Red]. As is seen, the formula obtained describes experimental results
within the range Red = 40–2600 well (the root-mean-square deviation of experimental points from those calculated by

Fig. 1. Generalization of experimental data on heat exchange between a vertical
cylinder and an infiltrated granular bed: 1–3) [2] (d = 3.0, 5.7, 1.75 mm); 4–7)
[5] (d = 0.62, 1.02, 2.37, 1.02 mm); 8) [6] (d = 3.1 mm); fluidizing agent: 7)

CO2; the rest) air; pressure: 1–3) atmospheric; 4–7) p = 0.1–0.93 MN/m2; 8) p

= 0.68–8.44 MN/m2; sol id l ine — according to Eq. (14). A B Nud  ⁄ 

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
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(14) is 7%). When Red < 40, the dependence on Red is weaker and close to Red
0.5 (dashed line), which is in full con-

formity with formula (12) describing heat transfer in a laminar mode. Thus, a noticeable effect of heat transfer due to
vortex formation and mixing of neighboring jets (turbulent flow mode) begins approximately at Red = 40.

Heat Transfer in Transverse Flow past a Cylinder. In [7], the dependence

NuD = 3.4 ReD
0.5

 Pr
0.33

 , (15)

which describes experimental data within the range ReD = 15–100 and Red ≤ 40, is obtained for a laminar flow mode.
It was emphasized in [7] that a characteristic scale — cylinder diameter — corresponds to this model. At higher ve-
locities, when effective heat transfer becomes substantial, the dependence of the heat-transfer coefficient on the rate of
filtration changes and, what is most important, the characteristic scale of the process also changes — the particle di-
ameter becomes the characteristic scale. In this case, the computational equation has the form [7]

Nud = 0.31 Red
0.8

 Pr
0.4

 . (16)

The range of verification of (16) is Red = 40–4000. We note that the lower value of Red = 40 coincides with the lim-
iting value of Red in the case of a vertical cylinder.

Heat Exchange with the Wall of a Round Tube Filled with a Granular Bed. In accordance with the clas-
sification of flow modes adopted in [8]: inertial mode (5 ≤ Red ≤ 80), transient mode (80 ≤ Red ≤ 120), and turbulent
mode (Red > 120), Dekhtyar’ et al. obtained the following dependences for the case of the boundary condition of the
second kind:

inertial mode

NuDa
 = 7.5 Ree

0.5
 Pr

0.5
 , (17)

turbulent mode

Nud = 0.4 Red
0.67

 Pr
0.4

 . (18)

Comparison of (17) and (18) shows that different characteristic scales correspond to different flow modes: Da and d
(with account for Red C Ree) correspond to the inertial mode and d corresponds to the turbulent mode.

It should be noted that appearance of the particle diameter among the characteristic dimensions for a laminar
mode is caused by the fact that formula (17) generalizes the experimental data obtained, as was mentioned in [8],
under the conditions where the contributions of thermal resistances of the near-wall zone and the zone core were com-
mensurable. Consequently, the presence of the particle diameter in (17) reflects the effect of the near-wall zone on
heat transfer.

As is seen, the laws governing a laminar mode can be realized in the infiltrated granular bed up to Red =
100. The difference in specific values of the upper limit of the range of Reynolds numbers (see above) is caused by
a certain arbitrariness of this quantity. Therefore, it is of importance to estimate its value by an independent technique
— using the known Ergun formula [9], which describes the pressure difference per height unit of the granular bed

∆p

L
 = 150⋅

(1 − ε)2

ε3  
ηfu

d
2  + 1.75⋅

1 − ε

ε3  
ρfu

2

d
 , (19)

or in dimensionless form

∆pd
3ρf

Lηf
2  = 150⋅

(1 − ε)2

ε3  Red + 1.75⋅
1 − ε

ε3  Red
2
 . (20)

We determine the number Red
∗  at which the linear and square terms in (20) are equal:

1378



Red
∗
 = 

150 (1 − ε)
1.75

 . (21)

For ε = 0.4 we obtain

Red
∗
 = 50 . (22)

It is seen from the examples given above that in the laminar mode of filtration under conditions where the
contribution of the near-wall zone to total thermal resistance can be neglected, the linear size of the heat-transfer sur-
face is, as in the case of a one-phase medium, the characteristic scale of the heat-transfer process. Since, under the
conditions mentioned, the laws governing heat transfer in granular beds and in a one-phase medium are described by
similar dependences (c.f., e.g., (12) and (15) with the known formulas for a one-phase medium [10]), we can speak
about the analogy between these processes.

As a result, we show that different characteristic scales of the heat-transfer process correspond to different hy-
drodynamic modes of flow in the granular bed. Inertia forces, the effect of which becomes substantial with Red C 50,
are responsible for the appearance of effective heat transfer.

The occurrence of an analogy between the processes of heat transfer in a granular bed and in a one-phase me-
dium in a laminar mode is found under conditions where the effect of the near-wall zone can be disregarded.

NOTATION

c, specific heat capacity, J/(kg⋅deg); d, particle diameter, m; de, hydraulic diameter of particles, m; D, diameter
of the cylinder; Da, diameter of the granular bed (apparatus), m; f = √ Peλ0 ⁄ ε ; K0 and K1, modified Bessell functions
of the first kind and zero and first order; K∗  = K1(sξ∗ )/K0(sξ∗ ); L, length of the surface, height of the cylinder, m;
Nud = αd ⁄ λf, NuL = αL ⁄ λf, NuD = αD ⁄ λf, NuDa

 = αDa
 ⁄ λf, Nusselt numbers; Pr = cfηf

 ⁄ λf, Prandtl number; Pe =
cfρfuDa

2 ⁄ 4λL, Peclet number; p, pressure, N/m2; ∆p, pressure difference, N/m2; Red = udρf
 ⁄ ηf, ReD = uDρf

 ⁄ ηf, ReL
= uLρf

 ⁄ ηf, Ree = udeρf
 ⁄ ηf, Reynolds numbers; s = √Pe ; u, rate of gas filtration, m/sec; α, heat-transfer coefficient,

W/(m2⋅deg); ε, porosity; ηf, dynamic viscosity of gas, N⋅sec/m2; λs, thermal conductivity of material particles,
W/(m⋅deg); λ, thermal conductivity of the granular bed, W/(m⋅deg); λf, molecular thermal conductivity of gas,
W/(m⋅deg); λeff = λf + 0.0061ρfcfud ⁄ ε, effective thermal conductivity of a gas film near the heat-transfer surface,
W/(m⋅deg); λ0 = λ ⁄ λeff, ξ

∗  = ξd + ξa, ξd = 0.2d ⁄ Da; ξa = D ⁄ Da; ρ, density, kg/m3. Subscripts: a, apparatus; e, equiva-
lent; f, gas; s, particles; eff, effective.
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